
International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 1497
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Methodology to Produce Deterministic
Automaton for Extended Operators in Regular

Expression
Mirzakhmet Syzdykov, mirzakhmets@gmail.com, Alma-TV LLP

Abstract— Recent and past work for extended operators (AND, MINUS) in regular expression was covered only by Berry-Sethi. However,
the estimation of complexity wasn't given (in fact the method produces non-deterministic automaton, NFA). In this paper the methodics
known as "overriding" is presented for this task. This methodics uses semantic rules overriding the typical NFA to produce DFA
(deterministic finite automaton).

Index Terms— automata theory; pattern recognition; soft computing; subset construction; computational intelligence; extended regular
expression; deterministic finite automaton.

—————————— ——————————

1 INTRODUCTION

First the regular expressions are studied, then the Thomp-
son [1] method is introduced to produce NFA from DFA.
Similarly, Berry-Sethi algorithm [2] can produce NFA, for

which the semantic rules are to be applied in order to build
DFA:

NFA == NFA x [Semantic Rules]

→ DFA (for extended operators) (1)

2 REGULAR EXPRESSIONS
Regular expressions can be defined as a set of rules to describe
the regular language. It's known that these languages can be
either finite or inifinite. It's also known that regular expres-
sions (R and R[i]) are defined over some alphabet A. This al-
phabet defined the set of letters from which the words are
constructed in the regular language. In [3] the definition of
regular expressions is given. Here only the subset of this ex-
pressions is studied, in more words the operators AND and
MINUS (along with NOT-operator) are described:

R = R[1] & R[2] (a set of words L(R):
L(R) = L(R[1]) L(R[2])) - AND; (2)

~R = А*– R - NOT; (3)

R = R[1] – R[2],L(R) = {

w: w L(R[1]) & w ! L(R[2])}) - MINUS. (4)

3 KNOWN ALGORITHMS

The Thompson algorithm [1] for building NFA from regular
expression is well-known and was studied in deep for the past
half of century. It has many practical applications and is very
simple for understanding and extension. In [4] the alternative
automaton (known as a Glushkov automaton) was well-
studied and characterized, obviously, Glushkov automaton

can be constructed from Thompson's by applying the follow-
rule:

Glushkov.NFA =
[Follow Semanitcs] (Thompson.NFA) (5)

This case has one more proof of Thompson's method univer-
sality and applicability even for large cases as automaton has
as fewer states as the input regular expression. For the follow
automaton this bound is quadratic due to Kleene-star explo-
sion.
Another interesting approach of constructing automaton from
regular expression is based on derivatives [5]. The derivative
is an operator to derive from regular expression and, thus,
recursively to build an automatonn (either non-deterministic
or deterministic). Berry and Sethi in [2] showed that deriva-
tives can be applied to the application of regular expression as
a state in automaton. Thus, the whole regular expression
products more expressions according to deviation operator.
This approach, however, has a low-bound estimation. Also, in
[2] the deviation was introduced for extended operators
(AND, MINUS and NOT).

4 SUBSET CONSTRUCTION
The method described in this paper uses subset construction
to convert overriden NFA into DFA with respect to the seman-
tic rules due to which the complexity expands. In [6] the theo-
retical background and a wise-theorem were proven so that
the NFA can be converted to DFA. The method described dif-
fers only in using the overriden operators to construct the
DFA in state-space of NFA. Obviously, the state-space of con-
struction NFA-DFA is regulated by semantic rules.

5 EXTENDED OPERATORS
For intersection operator, as it was proposed in [3], the addi-
tional semaphore is introduced which is represented by acti-
vators of variable degree. These activators are actually filters

IJSER

http://www.ijser.org/
mailto:mirzakhmets@gmail.com

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 1498
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

required to model the boolean state space traversal, while the
noise is overridden in algorithm traversing this structure dur-
ing subset construction, when subsets of NFA states are re-
placed by single representative state in the artificial determi-
nistic-finite automaton (DFA) to be constructed.
This would be better written as:

Algorithm -> State.Space * Filters.Activators^2 (6)

From programming point of view the activator can be mod-
eled during empty transitions removal or compression as:

if (state2.AndCount > 0) --state2.AndCount;
if (state2.AndCount == 0)
{
stack.Push(state2);
}

The NFA construction for AND-operator can be better ex-
amined below:

Fig. 1. NFA-construction for the expression “R[1]&R[2]” (counter values
after “/”-sign)

The experimental benchmark and estimation data can be ex-
amined below. In this cases the regular expression
“(((a|b)*a(a|b)*)&((a|b)*b(a|b)*))” is used as a sample which
will be repeated by concatenating either by product or AND-
operator.

TABLE 1
BENCHMARK DATA SET

 Concatenated Concatenated by AND-
operator

Repeat
Count

Running
Time
(sec.)

Number
of States

Running
Time (sec.)

Number
of States

1 0,013 9 0,05 9
2 0,024 15 0,22 9
4 0,148 27 0,068 9
8 1,082 51 0,319 9
16 7,924 99 1,268 9

Fig. 2. Running Time plot

Fig. 3. States count plot

Obviously, the results converge to the almost linear model.
In [7] the methodics for MINUS- and NOT-operator was pre-
sented. For this purpose the event-driven model is simply
used. Thus, the minus operator can be refactored to two
events:

word in L(R[1]) AND word not in L(R[2]) (7)

It would be better understood from programming point of
view:

if (state2.VisitIndex != Tuple.VisitIndex)
{
state2.VisitIndex = Tuple.VisitIndex;
if (state2.Type == C_NFA_State_Type.AND)
 state2.AndCount = 2 - 1;
else if (state2.Type == C_NFA_State_Type.MINUS)
{
 if (!state1.out_edges[i].IsNegatedPart)
 {
 stack.Push(state2);
 }
}
else
{
 stack.Push(state2);

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 1499
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

}
}
else
{
 if (state2.Type == C_NFA_State_Type.AND)
 {
 if (state2.AndCount > 0) --state2.AndCount;
 if (state2.AndCount == 0)
 {
 stack.Push(state2);
 }
 }
}

Let’s study the example outputs of presented algorithms:

Fig.4.DFA for expression “(((0|1)*0(0|1)*)&((0|1)*1(0|1)*))”

Fig.5. DFA for expression “(a|b|c)*-(a|b*)”

6 COMPARATIVE STUDY
In [7] the experimental study was proposed for extended regu-
lar expressions. Algorithm differs from that presented in this
paper in fact that it uses derivative trees and optimization
technique for rewriting the regular expression in some canoni-
cal form. Our algorithm produces similar results for sample
expression “~(0~01)1”, shown on Figure 6.

Fig.6. Sample result

6 CONCLUSION AND FURTHER WORK
In [3] the conclusion ends as:
“The algorithm in overall can be represented as a cross-
product of NFA and control vector (see Section 1) which forms
a hierarchy. The hierarchy can be defined as a set of semantic
rules due to which the complexity expands. This hierarchy is
bounded by AND-operator counters. The hierarchies (a, b)
and (a, b, c) are equivalent over step of subset construction if
in parameterized NFA the states a and b are met earlier than
state c. These states are assigned the counter of value two, as
they are states for the AND-operator construction. The further
work is to describe the theoretical continuation of cross-over
product transition options for negation and subtraction opera-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 1500
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

tor, including the methods to use them in order to build the
final DFA. ”
In this work the results of the theoretical continuation of [8]
are presented:

1. The activators and events can override the NFA;
2. The semantic rules can be used for DFA construction

by subset-methodics;
3. The semantic ruels can be extended for specific case to

traverse only selected region of state-space.
4. State-space is, by definition, a Boolean which can be

studied from the noise paradigm [8], where the
sought state-space region is reduced by implementing
control vectors production operator.

The further work consists of generalization of experimentally
obtained results for better studying of noise in computer
science.

ACKNOWLEDGMENT
The author of this article expresses gratitude to the members
of Institute of Informational and Computational Technologies
(Almaty, Republic of Kazakhstan, http://www.ipic.kz): Ma-
myrbayev Orken Zhumazhanovich, Kapalova Nursulu Al-
dazharovna and Yunicheva Nadiya Rafkatovna for their work
in organizing the conference, devoted to the 25th anniversary
of the establishment of the institute

REFERENCES
[1] K. Thompson, “Regular expression search algorithm,” Comm. ACM, 11 (6),

pp. 419–422, 1968.
[2] G. Berry, R. Sethi, “From regular expressions to deterministic auto-

mata,” Theoretical Computer Science, 48, pp. 117-126, 1986.
[3] M. Syzdykov, “Algorithm to Generate DFA for AND-operator in

Regular Expression,” International Journal of Computer Applications
(0975-8887), Volume 124 - No. 8, pp. 31-34, 2015.

[4] Pascal Caron, Djelloul Ziadi, “Characterization of Glushkov automa-
ta,” Theoretical Computer Science, 233, pp. 75-90, 2000.

[5] Brzozowski, Janusz A, “Derivatives of regular expressions,” Journal
of the ACM, 11(4), pp. 481– 494, 1964.

[6] M.O. Rabin, D. Scott, “Finite automata and their decision problems,”
IBM J. Res. Develop., 3 (2), pp. 114– 125, 1959.

[7] Koushik Sen, Grigore Rosu, “Generating optimal monitors for ex-
tended regular expressions,” Electronic Notes in Theoretical Com-
puter Science 89 No. 2, pp. 226 – 245, 2003.

[8] M. Syzdykov, “Theory of Noise with Applications: A Practical and
Theoretical Guide,” Lambert AP, pp. 46-54, 2016.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Regular Expressions
	3 Known Algorithms
	4 Subset Construction
	5 Extended Operators
	6 Comparative Study
	6 Conclusion and Further Work
	Acknowledgment
	References

